
9.1 Stability and the phase plane

Vocabulary we already know:
• phase plane, direction field, slope field
• phase portrait of a 2-dimensional 

autonomous system
• solution curve = trajectory 
• critical point, equilibrium solution 

Vocabulary that is new:
• node (proper, improper)
• sink source
• spiral sink = stable spiral point
• spiral source = unstable spiral point
• stable center
• saddle point
• stable, asymptotically stable
• unstable
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Page 512 question 9 (differently worded, plus a 
bit, on the HW but not to be handed in)

In the equation  x’’ + 4x - x^3 = 0  put
x’ = y,  y’ = x^3 - 4x
and use a computer system or graphing 
calculator to construct a phase portrait and 
direction field. Find the critical points and 
classify them as sink, source, saddle point, spiral 
point, stable center, going by what they look 
like.
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Pre-class Warm-up!!!
• The system of equations  x’ =  Ax  where

has general solution

(because  A  has eigenvalues
and eigenvectors

What is the correct phase portrait for this system?

a. b.

Another question: is it easier to draw the 
phase portrait knowing 

a.  the original equations, or

b.  the solutions to the system. 

Yet another question: what is the difference 
between a phase portrait and a direction 
field?
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Types of critical point.  Critical points may be

Stable

Unstable

Asymptotically stable (implies stable)

Examples of the form  x’ = Ax.
The critical point is at the origin.

Question: do the 
trajectories go
A  clockwise?
B  counterclockwise?
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Separately from whether a critical point is 
stable or unstable, it can be a 
• node, which can be proper or improper,
• a saddle point,
• a spiral point, or 
• a center

A node is a critical point so that
• either every trajectory approaches it or every 

trajectory recedes from it, and
• every trajectory is tangent to some straight line 

through the critical point.

The node is proper if all the tangent lines are 
distinct.

A node or a spiral point can be a source or a 
sink, depending on its stability.

Examples from the last page:  x’ = Ax  with a 
critical point at the origin.

Question: for each of 1, 2, 3,  
is it a node, or not a node?
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Example:  x’ = Ax  where  A = 

Eigenvalues: only one eigenvector

Question: Is it
a.  stable b.  unstable

We can check that every trajectory is tangent 
to the x-axis as it approaches the origin.
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Spiral points

A critical point where the trajectories wind round 
and round, and either approach the critical point 
or leave it, is called a spiral.

If the trajectories wind round and round and are 
closed, the critical point is called a center.

Is the critical point
a.  stable?
b.  unstable?
c. asymptotically stable?
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Typical question, like questions 13-20:
The system of equations given below has a 
critical point when (x,y) = (0,0).  Classify this 
critical point, determining whether it is
• stable, asymptotically stable or unstable, and
• a proper node, an improper node, a spiral 

point, a saddle point or a stable center.

Stable
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Proper node
Improper node
Source
Sink
Spiral point
Saddle point
Stable center
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